前言
美赛论文对应主体代码部分,吐槽一句美赛居然不收代码也是离谱。
论文配套的代码均为本人编写,运行无问题。
感谢组员组长的配合论文撰写。
正文
1
2
3
4
5
6
7
8
9
10
|
import numpy as np
import pandas as pd
import re,math
import matplotlib.pyplot as plt
from scipy.optimize import linprog
np.set_printoptions(suppress=True)
data1 = pd.read_csv(r'BCHAIN-MKPRU.csv') # B
data2 = pd.read_csv(r'LBMA-GOLD.csv') # G
|
1
2
3
4
5
6
7
8
9
10
11
|
r_hex = '#dc2624' # red, RGB = 220,38,36
dt_hex = '#2b4750' # dark teal, RGB = 43,71,80
tl_hex = '#45a0a2' # teal, RGB = 69,160,162
r1_hex = '#e87a59' # red, RGB = 232,122,89
tl1_hex = '#7dcaa9' # teal, RGB = 125,202,169
g_hex = '#649E7D' # green, RGB = 100,158,125
o_hex = '#dc8018' # orange, RGB = 220,128,24
tn_hex = '#C89F91' # tan, RGB = 200,159,145
g50_hex = '#6c6d6c' # grey-50, RGB = 108,109,108
bg_hex = '#4f6268' # blue grey, RGB = 79,98,104
g25_hex = '#c7cccf' # grey-25, RGB = 199,204,207
|
|
Date |
Value |
0 |
9/11/16 |
621.65 |
1 |
9/12/16 |
609.67 |
2 |
9/13/16 |
610.92 |
3 |
9/14/16 |
608.82 |
4 |
9/15/16 |
610.38 |
... |
... |
... |
1821 |
9/6/21 |
51769.06 |
1822 |
9/7/21 |
52677.40 |
1823 |
9/8/21 |
46809.17 |
1824 |
9/9/21 |
46078.38 |
1825 |
9/10/21 |
46368.69 |
1826 rows × 2 columns
Date False
Value False
dtype: bool
|
Date |
USD (PM) |
0 |
9/12/16 |
1324.60 |
1 |
9/13/16 |
1323.65 |
2 |
9/14/16 |
1321.75 |
3 |
9/15/16 |
1310.80 |
4 |
9/16/16 |
1308.35 |
... |
... |
... |
1260 |
9/6/21 |
1821.60 |
1261 |
9/7/21 |
1802.15 |
1262 |
9/8/21 |
1786.00 |
1263 |
9/9/21 |
1788.25 |
1264 |
9/10/21 |
1794.60 |
1265 rows × 2 columns
1
2
|
# 线性插值填充
data2.interpolate(method='linear', limit_direction='backward', axis=0, inplace = True)
|
1
2
3
4
5
|
def amplitude(list_1): # 涨幅跌幅计算函数
x1 = list_1.copy()[1:]
x2 = list_1.copy()[:-1]
y = (x1 - x2)/x2
return y
|
1
2
3
4
5
|
# 比特币日涨幅
day_b_amp = amplitude(np.array(data1["Value"]))
pd.DataFrame(day_b_amp).T.to_csv("比特币日涨幅.csv")
day_b_amp_b = pd.concat([pd.DataFrame(np.array(data1["Date"])[1:],columns=["Date"]), pd.DataFrame(day_b_amp)],axis=1)
day_b_amp
|
array([-0.01927129, 0.00205029, -0.00343744, ..., -0.11139939,
-0.01561211, 0.00630035])
1
2
3
4
5
|
# 黄金日涨幅
day_amp = amplitude(np.array(data2["USD (PM)"]))
pd.DataFrame(day_amp).T.to_csv("黄金日涨幅.csv")
day_g_amp_g = pd.concat([pd.DataFrame(np.array(data2["Date"])[1:],columns=["Date"]), pd.DataFrame(day_amp)],axis=1)
day_amp
|
array([-0.0007172 , -0.00143542, -0.00828447, ..., -0.00896152,
0.0012598 , 0.00355096])
1
|
pd.DataFrame(np.array(data2["Date"][1:]),columns=["Date"])
|
|
Date |
0 |
9/13/16 |
1 |
9/14/16 |
2 |
9/15/16 |
3 |
9/16/16 |
4 |
9/19/16 |
... |
... |
1259 |
9/6/21 |
1260 |
9/7/21 |
1261 |
9/8/21 |
1262 |
9/9/21 |
1263 |
9/10/21 |
1264 rows × 1 columns
|
0 |
0 |
-0.000717 |
1 |
-0.001435 |
2 |
-0.008284 |
3 |
-0.001869 |
4 |
0.004968 |
... |
... |
1259 |
-0.001152 |
1260 |
-0.010677 |
1261 |
-0.008962 |
1262 |
0.001260 |
1263 |
0.003551 |
1264 rows × 1 columns
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
|
# 黄金全投夏普比率
SRg = []
SRb = []
cct = pd.concat([pd.DataFrame(np.array(data2["Date"][1:]),columns=["Date"]), pd.DataFrame(day_amp)],axis=1).set_index(["Date"])
y1 = cct[0:77]
y2 = cct[77:329]
y3 = cct[329:582]
y4 = cct[582:835]
y5 = cct[835:1089]
y6 = cct[1089:]
y = [y1,y2,y3,y4,y5,y6]
# ym_l = []
# yd_l = []
for i in y:
ym = np.array(i).mean()
yd = np.std(np.array(i),ddof = 1)
SRg.append(ym/yd)
# ym_l.append(ym)
# yd_l.append(yd)
# fig = plt.figure( figsize=(16,4), dpi=100)
# ax = fig.add_subplot(1,1,1)
# x = np.array([i+1 for i in range(6)])
# plot = ax.plot( x, ym_l, color=g_hex, linewidth=2, linestyle='-',label='mean' )
# plot = ax.plot( x, yd_l, color=o_hex, linewidth=2, linestyle='-',label='std' )
# ax.set_xticks( range(0,len(x),100))
# plt.xlabel('x',fontsize=20)
# plt.ylabel('y',fontsize=20)
# plt.title('title',fontsize=25)
# ax.legend( loc=0, frameon=True )
# # plt.savefig('黄金交易图.png',dpi=600)
# plt.show()
# pd.DataFrame([ym_l,yd_l],columns=[i+1 for i in range(6)],index=["mean", "std"])
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
|
# 比特币全投夏普比率
cct = pd.concat([pd.DataFrame(np.array(data1["Date"][1:]),columns=["Date"]), pd.DataFrame(day_b_amp)],axis=1).set_index(["Date"])
y1 = cct[0:111]
y2 = cct[111:476]
y3 = cct[476:841]
y4 = cct[841:1206]
y5 = cct[1206:1572]
y6 = cct[1572:]
y = [y1,y2,y3,y4,y5,y6]
# ym_l = []
# yd_l = []
for i in y:
ym = np.array(i).mean()
yd = np.std(np.array(i),ddof = 1)
SRb.append(ym/yd)
# ym_l.append(ym)
# yd_l.append(yd)
# fig = plt.figure( figsize=(16,4), dpi=100)
# ax = fig.add_subplot(1,1,1)
# x = np.array([i+1 for i in range(6)])
# plot = ax.plot( x, ym_l, color=g_hex, linewidth=2, linestyle='-',label='mean' )
# plot = ax.plot( x, yd_l, color=o_hex, linewidth=2, linestyle='-',label='std' )
# ax.set_xticks( range(0,len(x),100))
# plt.xlabel('x',fontsize=20)
# plt.ylabel('y',fontsize=20)
# plt.title('title',fontsize=25)
# ax.legend( loc=0, frameon=True )
# # plt.savefig('黄金交易图.png',dpi=600)
# plt.show()
# pd.DataFrame([ym_l,yd_l],columns=[i+1 for i in range(6)],index=["mean", "std"])
|
1
2
|
print(SRg)
print(SRb)
|
[-0.2128062657427464, 0.07524090768958894, -0.008487256419823732, 0.09779287961781746, 0.07839439351589454, -0.03615613018594472]
[0.24361905614827226, 0.1725218418196826, -0.06911252562116423, 0.06626759793528327, 0.11729362378441305, 0.06379987362486464]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
|
# SR037 = []
# # 3:7
# day_03_g_amp = day_amp*0.3
# day_07_b_amp = day_b_amp*0.7
# cct = pd.concat([pd.DataFrame(np.array(data2["Date"][1:]),columns=["Date"]), pd.DataFrame(day_03_g_amp)],axis=1).set_index(["Date"])
# y1 = cct[0:77]
# y2 = cct[77:329]
# y3 = cct[329:582]
# y4 = cct[582:835]
# y5 = cct[835:1089]
# y6 = cct[1089:]
# y037g = [y1,y2,y3,y4,y5,y6]
# cct = pd.concat([pd.DataFrame(np.array(data1["Date"][1:]),columns=["Date"]), pd.DataFrame(day_07_b_amp)],axis=1).set_index(["Date"])
# y1 = cct[0:111]
# y2 = cct[111:476]
# y3 = cct[476:841]
# y4 = cct[841:1206]
# y5 = cct[1206:1572]
# y6 = cct[1572:]
# y037b = [y1,y2,y3,y4,y5,y6]
# y = []
# for i,j in zip(y037g,y037b):
# y.append(i+i)
# for i in y:
# ym = np.array(i).mean()
# yd = np.std(np.array(i),ddof = 1)
# SR037.append(ym/yd)
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
|
# 5:5
SR055 = []
day_05_g_amp = day_amp*0.5
day_05_b_amp = day_b_amp*0.5
cct = pd.concat([pd.DataFrame(np.array(data2["Date"][1:]),columns=["Date"]), pd.DataFrame(day_05_g_amp)],axis=1).set_index(["Date"])
y1 = cct[0:77]
y2 = cct[77:329]
y3 = cct[329:582]
y4 = cct[582:835]
y5 = cct[835:1089]
y6 = cct[1089:]
y055g = [y1,y2,y3,y4,y5,y6]
cct = pd.concat([pd.DataFrame(np.array(data1["Date"][1:]),columns=["Date"]), pd.DataFrame(day_05_b_amp)],axis=1).set_index(["Date"])
y1 = cct[0:111]
y2 = cct[111:476]
y3 = cct[476:841]
y4 = cct[841:1206]
y5 = cct[1206:1572]
y6 = cct[1572:]
y055b = [y1,y2,y3,y4,y5,y6]
y = []
for i,j in zip(y055g,y055b):
y.append(i+i)
for i in y:
ym = np.array(i).mean()
yd = np.std(np.array(i),ddof = 1)
SR055.append(ym/yd)
print(SR055)
|
[-0.2128062657427464, 0.07524090768958894, -0.008487256419823732, 0.09779287961781746, 0.07839439351589454, -0.03615613018594472]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
|
# # 7:3
# SR073 = []
# day_07_g_amp = day_amp*0.7
# day_03_b_amp = day_b_amp*0.3
# cct = pd.concat([pd.DataFrame(np.array(data2["Date"][1:]),columns=["Date"]), pd.DataFrame(day_07_g_amp)],axis=1).set_index(["Date"])
# y1 = cct[0:77]
# y2 = cct[77:329]
# y3 = cct[329:582]
# y4 = cct[582:835]
# y5 = cct[835:1089]
# y6 = cct[1089:]
# y073g = [y1,y2,y3,y4,y5,y6]
# cct = pd.concat([pd.DataFrame(np.array(data1["Date"][1:]),columns=["Date"]), pd.DataFrame(day_03_b_amp)],axis=1).set_index(["Date"])
# y1 = cct[0:111]
# y2 = cct[111:476]
# y3 = cct[476:841]
# y4 = cct[841:1206]
# y5 = cct[1206:1572]
# y6 = cct[1572:]
# y073b = [y1,y2,y3,y4,y5,y6]
# y = []
# for i,j in zip(y073g,y073b):
# y.append(i+i)
# for i in y:
# ym = np.array(i).mean()
# yd = np.std(np.array(i),ddof = 1)
# SR073.append(ym/yd)
|
1
2
3
|
# print(SR037)
# print(SR055)
# print(SR073)
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
# 合并两组数据
temp = []
for i in np.array(data2["Date"]):
if i in np.array(data1["Date"]):
temp.append(i)
temp1 = [] # 拼接日期
for i in temp:
c = data1[data1["Date"] == i]
temp1.append(c)
new_data1 = pd.concat(temp1)# 新的比特币数据
# 组合一起
merge1 = pd.merge(new_data1,data2,how='left',on='Date')
merge1 = merge1.set_index(["Date"])
merge1
|
|
Value |
USD (PM) |
Date |
|
|
9/12/16 |
609.67 |
1324.60 |
9/13/16 |
610.92 |
1323.65 |
9/14/16 |
608.82 |
1321.75 |
9/15/16 |
610.38 |
1310.80 |
9/16/16 |
609.11 |
1308.35 |
... |
... |
... |
9/6/21 |
51769.06 |
1821.60 |
9/7/21 |
52677.40 |
1802.15 |
9/8/21 |
46809.17 |
1786.00 |
9/9/21 |
46078.38 |
1788.25 |
9/10/21 |
46368.69 |
1794.60 |
1265 rows × 2 columns
1
2
|
# 皮尔森相关系数
merge1.corr('pearson')
|
|
Value |
USD (PM) |
Value |
1.00000 |
0.65017 |
USD (PM) |
0.65017 |
1.00000 |
1
2
|
# 斯皮尔曼相关系数
merge1.corr('spearman')
|
|
Value |
USD (PM) |
Value |
1.000000 |
0.787329 |
USD (PM) |
0.787329 |
1.000000 |
1
2
|
# 相关系数
merge1.corr('kendall')
|
|
Value |
USD (PM) |
Value |
1.000000 |
0.559164 |
USD (PM) |
0.559164 |
1.000000 |
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
|
def gold(short_item, long_item,score, a):
# 周黄金平均值
count = 1
temp3 = []
while True:
tp = data2.iloc[short_item*(count-1): short_item*count]["USD (PM)"].mean()
count+= 1
temp3.append(tp)
if count >= len(data2)/short_item:
break
temp3_df = pd.DataFrame(temp3) # 252周的金价
# 周平均金价图
# fig = plt.figure( figsize=(16,4), dpi=100)
# ax = fig.add_subplot(1,1,1)
# x = temp3_df.index
# y = temp3_df.values
# plot = ax.plot( x, y, color=dt_hex, linewidth=2, linestyle='-',label='week' )
# ax.set_xticks( range(0,len(x),10))
# ax.legend( loc=0, frameon=True )
# 长期(20天)
count = 1
temp4_max = [] # 周高位点
temp4_min = [] # 周低位点
while True:
tp_max = max(temp3[(count-1)*long_item:count*long_item])
tp_min = min(temp3[(count-1)*long_item:count*long_item])
temp4_max.append(tp_max)
temp4_min.append(tp_min)
count+=1
if count >= len(temp3)/long_item:
break
temp4_max_h = amplitude(np.array(temp4_max)) # 周高位点
temp4_min_l = amplitude(np.array(temp4_min)) # 周低位点
#周趋势(同增同减同趋势,不同则未知)
tptp = []
for i,j in zip(temp4_max_h, temp4_min_l):
if i > 0 and j > 0:
tptp.append(1)
elif i < 0 and j < 0:
tptp.append(-1)
else:
tptp.append(0)
tptp_w_g = pd.DataFrame(tptp) # 第二周开始的61周涨跌幅度表 -1跌+1涨
#周趋势图(长期)
# fig = plt.figure( figsize=(16,4), dpi=100)
# ax = fig.add_subplot(1,1,1)
# x = tptp_w_g.index
# y = tptp_w_g.values
# plot = ax.plot( x, y,"r*", color=dt_hex )
# ax.set_xticks( range(2,len(x),10))
# ax.legend( loc=0, frameon=True )
# plt.show()
# # (15天)
# count = 1
# temp5_max = []
# temp5_min = []
# temp5_max_index = []
# temp5_min_index = []
# while True:
# tp_max = max(np.array(data2["USD (PM)"])[(count-1)*15:count*15])
# tp_min = min(np.array(data2["USD (PM)"])[(count-1)*15:count*15])
# temp5_max_index.append((count-1)*15+list(np.array(data2["USD (PM)"])[(count-1)*15:count*15]).index(tp_max))
# temp5_min_index.append((count-1)*15+list(np.array(data2["USD (PM)"])[(count-1)*15:count*15]).index(tp_min))
# temp5_max.append(tp_max)
# temp5_min.append(tp_min)
# count+=1
# if count >= len(data2)/15:
# break
# temp5_max_h = amplitude(np.array(temp5_max))
# temp5_min_l = amplitude(np.array(temp5_min))
# #天趋势
# tptp = []
# temp5_max_value = []
# temp5_min_value = []
# temp5_max_index_real = []
# temp5_min_index_real = []
# count = 0
# for i,j in zip(temp5_max_h, temp5_min_l):
# if i > 0 and j > 0:
# tptp.append(1)
# temp5_max_value.append(np.array(data2.loc[[temp5_max_index[count]],["USD (PM)"]])[0])
# temp5_min_value.append(np.array(data2.loc[[temp5_min_index[count]],["USD (PM)"]])[0])
# temp5_max_index_real.append(temp5_max_index[count])
# temp5_min_index_real.append(temp5_min_index[count])
# elif i < 0 and j < 0:
# tptp.append(-1)
# temp5_max_value.append(np.array(data2.loc[[temp5_max_index[count]],["USD (PM)"]])[0])
# temp5_min_value.append(np.array(data2.loc[[temp5_min_index[count]],["USD (PM)"]])[0])
# temp5_max_index_real.append(temp5_max_index[count])
# temp5_min_index_real.append(temp5_min_index[count])
# else:
# tptp.append(0)
# count += 1
# tptp_d = pd.DataFrame(tptp)
# # 点图
# fig = plt.figure( figsize=(16,4), dpi=100)
# ax = fig.add_subplot(1,1,1)
# x = tptp_d.index
# y = tptp_d.values
# plot = ax.plot( x, y,"r*", color=dt_hex )
# ax.set_xticks( range(2,len(x),10))
# plt.show()
# # 折线描点图
# fig = plt.figure( figsize=(16,4), dpi=100)
# ax = fig.add_subplot(1,1,1)
# x = np.array(data2.index)[0:200]
# y = np.array(data2["USD (PM)"])[0:200]
# plot = ax.plot( x, y, color=dt_hex, linewidth=2, linestyle='-',label='day' )
# plt.scatter(temp5_max_index_real[0:12], temp5_max_value[0:12], s=25, c='r')
# plt.scatter(temp5_min_index_real[0:12], temp5_min_value[0:12], s=25, c='b')
# ax.set_xticks( range(0,len(x),30))
# plt.xlabel('x',fontsize=20)
# plt.ylabel('y',fontsize=20)
# plt.title('title',fontsize=25)
# ax.legend( loc=0, frameon=True )
# plt.savefig('天周期点图.png',dpi=600)
# plt.show()
# 5天(一周趋势)
count = 1
temp5_max = []
temp5_min = []
# temp5_max_index = []
# temp5_min_index = []
while True:
tp_max = max(np.array(data2["USD (PM)"])[(count-1)*short_item:count*short_item])
tp_min = min(np.array(data2["USD (PM)"])[(count-1)*short_item:count*short_item])
# temp5_max_index.append((count-1)*5+list(np.array(data2["USD (PM)"])[(count-1)*5:count*5]).index(tp_max))
# temp5_min_index.append((count-1)*5+list(np.array(data2["USD (PM)"])[(count-1)*5:count*5]).index(tp_min))
temp5_max.append(tp_max)
temp5_min.append(tp_min)
count+=1
if count >= len(data2)/short_item:
break
temp5_max_h = amplitude(np.array(temp5_max))
temp5_min_l = amplitude(np.array(temp5_min))
#
tptp = []
# temp5_max_value = []
# temp5_min_value = []
# temp5_max_index_real = []
# temp5_min_index_real = []
count = 0
for i,j in zip(temp5_max_h, temp5_min_l):
if i > 0 and j > 0:
tptp.append(1)
# temp5_max_value.append(np.array(data2.loc[[temp5_max_index[count]],["USD (PM)"]])[0])
# temp5_min_value.append(np.array(data2.loc[[temp5_min_index[count]],["USD (PM)"]])[0])
# temp5_max_index_real.append(temp5_max_index[count])
# temp5_min_index_real.append(temp5_min_index[count])
elif i < 0 and j < 0:
tptp.append(-1)
# temp5_max_value.append(np.array(data2.loc[[temp5_max_index[count]],["USD (PM)"]])[0])
# temp5_min_value.append(np.array(data2.loc[[temp5_min_index[count]],["USD (PM)"]])[0])
# temp5_max_index_real.append(temp5_max_index[count])
# temp5_min_index_real.append(temp5_min_index[count])
else:
tptp.append(0)
count += 1
tptp_5 = pd.DataFrame(tptp)
#
# fig = plt.figure( figsize=(16,4), dpi=100)
# ax = fig.add_subplot(1,1,1)
# x = tptp_5.index
# y = tptp_5.values
# plot = ax.plot( x, y,"r*", color=dt_hex )
# ax.set_xticks( range(2,len(x),10))
# plt.show()
# 第一个20天
# 买入-1 卖出+1
status = 0 # 上一周的涨跌
#day_amp 黄金日涨幅
status_dict = [] # (日期,买入还是卖出)
day = 0
for i in range(long_item):
if i == 0: # 第二周
status_first_5 = np.array(tptp_w_g)[0][0]
if status_first_5 < 0:
status = -1 # 跌
elif status_first_5 > 0:
status = 1 # 涨
else:
status = 0
else: # 第三周以后20天以内
for j in range(short_item):
day = short_item*i+j+short_item-1
if status_dict == []: # 没有任何买入时
if status == 1:
status = np.array(tptp_w_g)[i-1][0]
continue
elif status == -1 and day_amp[day-1] > 0:
status_dict.append((day, -1, np.array(data2)[day][1])) # 买入
status = np.array(tptp_w_g)[i-1][0]
break
else: # 有买入后
# 上周涨跌判断 本周每日涨跌幅 上笔交易买卖情况
if status == -1 and day_amp[day-1] > 0 and status_dict[-1][1] >= 0: # 上一笔是卖出才能买入
status_dict.append((day, -1, np.array(data2)[day][1])) # 买入
status = np.array(tptp_w_g)[i-1][0]
break
elif status == -1 and day_amp[day-1] < 0 and status_dict[-1][1] <= 0: # 上一笔是买入才能卖出
status_dict.append((day, 1, np.array(data2)[day][1])) # 卖出
status = np.array(tptp_w_g)[i-1][0]
break
# status_dict
# # 模拟
# score = 10000
# ans = 0 # 手里黄金的盎司
# for i in status_dict:
# ans = ans-(score/(1.01*np.array(data2)[i[0]][1]*i[1]))
# # score = score+np.array(data2)[i[0]][1]*i[1] #i[0]*np.array(data2)[i[0]][1]*0.01
# ans*np.array(data2)[19][1] # 第26天
# 第二个月以及后面
for k in range(len(tptp_w_g)):
if np.array(tptp_w_g)[k][0] == 0:
status = np.array(tptp_w_g)[k-1][0]
else:
status = np.array(tptp_w_g)[k][0]
for i in range(long_item):
for j in range(short_item):
day = long_item*short_item*(k+1)+short_item*i+j
if status_dict == []: # 前期无交易
if status == -1 and day_amp[day-1] > 0: # 上一笔是卖出才能买入或无上一笔可买入
status_dict.append((day, -1, np.array(data2)[day][1])) # 买入
status = np.array(tptp_w_g)[i-1][0]
break
elif status == 1 and day_amp[day-1] < 0: # 上一笔是买入才能卖出,无上一笔的不能卖
status = np.array(tptp_w_g)[i-1][0]
continue
else: # 前期有交易
# 跌幅超过10%交易避免赔本
if status == 1 and ((np.array(data2)[day][1]-status_dict[-1][-1])/status_dict[-1][-1]) <= -0.1 and status_dict[-1][1] <= 0:
status_dict.append((day, -1, np.array(data2)[day][1])) # 卖出
break
if status == -1 and day_amp[day-1] > 0 and status_dict[-1][1] >= 0: # 上一笔是卖出才能买入
status_dict.append((day, -1, np.array(data2)[day][1])) # 买入
status = np.array(tptp_w_g)[i-1][0]
break
elif status == 1 and day_amp[day-1] < 0 and status_dict[-1][1] <= 0: # 上一笔是买入才能卖出
status_dict.append((day, 1, np.array(data2)[day][1])) # 卖出
status = np.array(tptp_w_g)[i-1][0]
break
# status_dict
# 保存 交易日期 交易情况 交易当日金价
temp6 = []
temp6_in_index = []
temp6_in_value = []
temp6_out_index = []
temp6_out_value = []
for i in status_dict:
temp6.append([i[0], i[1], np.array(data2)[i[0]][1]])
if i[1] == -1:
temp6_in_index.append(i[0])
temp6_in_value.append(i[2])
elif i[1] == 1:
temp6_out_index.append(i[0])
temp6_out_value.append(i[2])
output1 = pd.DataFrame(temp6, columns=["Date", "process", "price"])
# output1
#### 最终收益 final_zhuan
temp6_zhuan = []
# for i,j in zip(temp6_in_value, temp6_out_value):
# temp6_zhuan.append(j-i)
# print(j-i)
ans = 0 # 手里黄金盎司
count = 1
for i in status_dict:
if count%2 == 0:
#print(ans*np.array(data2)[i[0]][1])
score = (1-a)*ans*np.array(data2)[i[0]][1]
ans = 0
temp6_zhuan.append(score)
else:
ans = ans-(score/((1+a)*np.array(data2)[i[0]][1]*i[1]))
score = 0
count += 1
final_zhuan = temp6_zhuan[-1]-10000
if ans != 0:
final_zhuan += ans*(1-a)*ans*np.array(data2)[-1][1]
# print("最终收益: {}".format(final_zhuan))
# 折线描点图
# fig = plt.figure( figsize=(16,4), dpi=100)
# ax = fig.add_subplot(1,1,1)
# x = np.linspace(0, len(temp6_zhuan), len(temp6_zhuan))
# y = np.array(temp6_zhuan)
# plot = ax.plot( x, y, color=dt_hex, linewidth=2, linestyle='-',label='day' )
# ax.set_xticks( range(0,len(x),100))
# plt.xlabel('x',fontsize=20)
# plt.ylabel('y',fontsize=20)
# plt.title('title',fontsize=25)
# ax.legend( loc=0, frameon=True )
# plt.show()
return status_dict,final_zhuan
# gold(5,4)
temp_zz = []
for i in range(5, 20): # 中期
for j in range(2, 5): # 多少中期为长期
a1 = 0.01
temp_zz.append((i,j,gold(i, j, 10000, a1)))
temp_zzz = 0
for i in temp_zz:
if temp_zzz > i[2][-1]:
continue
elif temp_zzz <= i[2][-1]:
temp_zzz = i[2][-1]
tp_z = i
# 折线描点图
temp6_in_index = []
temp6_in_value = []
temp6_out_index = []
temp6_out_value = []
for i in tp_z[2][0]:
if i[1] == -1:
temp6_in_index.append(i[0])
temp6_in_value.append(i[2])
elif i[1] == 1:
temp6_out_index.append(i[0])
temp6_out_value.append(i[2])
fig = plt.figure( figsize=(16,4), dpi=100)
ax = fig.add_subplot(1,1,1)
x = np.array(data2.index)
y = np.array(data2["USD (PM)"])
plot = ax.plot( x, y, color=dt_hex, linewidth=2, linestyle='-',label='day' )
plt.scatter(temp6_in_index, temp6_in_value, s=25, c='r',label='in')
plt.scatter(temp6_out_index, temp6_out_value, s=25, c='b',label='out')
ax.set_xticks( range(0,len(x),100))
plt.xlabel('Date',fontsize=12)
plt.ylabel('Price',fontsize=12)
ax.legend( loc=0, frameon=True )
plt.savefig('黄金交易图.png',dpi=600)
plt.show()
print(tp_z)
|
(19, 4, ([(76, -1, 1145.9), (154, 1, 1281.85), (171, -1, 1257.4), (233, 1, 1282.3), (247, -1, 1333.1), (308, 1, 1291.85), (324, -1, 1264.55), (532, 1, 1223.0), (551, -1, 1203.25), (608, 1, 1312.4), (628, -1, 1285.85), (685, 1, 1280.95), (703, -1, 1431.4), (760, 1, 1503.1), (781, -1, 1490.6), (839, 1, 1567.85), (856, -1, 1578.25), (912, 1, 1682.05), (931, -1, 1737.95), (988, 1, 2031.15), (1008, -1, 1928.45)], 83270.07449418739))
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
|
def gold_zhangdie(short_item, long_item, score, a):
# 周黄金平均值
count = 1
temp3 = []
while True:
tp = data2.iloc[short_item*(count-1): short_item*count]["USD (PM)"].mean()
count+= 1
temp3.append(tp)
if count >= len(data2)/short_item:
break
temp3_df = pd.DataFrame(temp3) # 252周的金价
# 周平均金价图(中周期)
# fig = plt.figure( figsize=(16,4), dpi=100)
# ax = fig.add_subplot(1,1,1)
# x = temp3_df.index
# y = temp3_df.values
# plot = ax.plot( x, y, color=dt_hex, linewidth=2, linestyle='-',label='week' )
# ax.set_xticks( range(0,len(x),10))
# ax.legend( loc=0, frameon=True )
# 长期(20天)
count = 1
temp4_max = [] # 周高位点
temp4_min = [] # 周低位点
while True:
tp_max = max(temp3[(count-1)*long_item:count*long_item])
tp_min = min(temp3[(count-1)*long_item:count*long_item])
temp4_max.append(tp_max)
temp4_min.append(tp_min)
count+=1
if count >= len(temp3)/long_item:
break
temp4_max_h = amplitude(np.array(temp4_max)) # 周高位点
temp4_min_l = amplitude(np.array(temp4_min)) # 周低位点
#周趋势(同增同减同趋势,不同则未知)
tptp = []
for i,j in zip(temp4_max_h, temp4_min_l):
if i > 0 and j > 0:
tptp.append(1)
elif i < 0 and j < 0:
tptp.append(-1)
else:
tptp.append(0)
tptp_w_g = pd.DataFrame(tptp) # 第二周开始的61周涨跌幅度表 -1跌+1涨
#周趋势图(长期)
fig = plt.figure( figsize=(16,4), dpi=100)
plt.subplot(1,2,1)
x = tptp_w_g.index
y = tptp_w_g.values
plt.plot( x, y,"r*", color=dt_hex )
ax.set_xticks( range(2,len(x),10))
ax.legend( loc=0, frameon=True )
plt.xlabel('Time',fontsize=12)
plt.ylabel('Trend',fontsize=12)
plt.savefig("黄金长周期趋势点图.png")
#plt.show()
# # (15天)
# count = 1
# temp5_max = []
# temp5_min = []
# temp5_max_index = []
# temp5_min_index = []
# while True:
# tp_max = max(np.array(data2["USD (PM)"])[(count-1)*15:count*15])
# tp_min = min(np.array(data2["USD (PM)"])[(count-1)*15:count*15])
# temp5_max_index.append((count-1)*15+list(np.array(data2["USD (PM)"])[(count-1)*15:count*15]).index(tp_max))
# temp5_min_index.append((count-1)*15+list(np.array(data2["USD (PM)"])[(count-1)*15:count*15]).index(tp_min))
# temp5_max.append(tp_max)
# temp5_min.append(tp_min)
# count+=1
# if count >= len(data2)/15:
# break
# temp5_max_h = amplitude(np.array(temp5_max))
# temp5_min_l = amplitude(np.array(temp5_min))
# #天趋势
# tptp = []
# temp5_max_value = []
# temp5_min_value = []
# temp5_max_index_real = []
# temp5_min_index_real = []
# count = 0
# for i,j in zip(temp5_max_h, temp5_min_l):
# if i > 0 and j > 0:
# tptp.append(1)
# temp5_max_value.append(np.array(data2.loc[[temp5_max_index[count]],["USD (PM)"]])[0])
# temp5_min_value.append(np.array(data2.loc[[temp5_min_index[count]],["USD (PM)"]])[0])
# temp5_max_index_real.append(temp5_max_index[count])
# temp5_min_index_real.append(temp5_min_index[count])
# elif i < 0 and j < 0:
# tptp.append(-1)
# temp5_max_value.append(np.array(data2.loc[[temp5_max_index[count]],["USD (PM)"]])[0])
# temp5_min_value.append(np.array(data2.loc[[temp5_min_index[count]],["USD (PM)"]])[0])
# temp5_max_index_real.append(temp5_max_index[count])
# temp5_min_index_real.append(temp5_min_index[count])
# else:
# tptp.append(0)
# count += 1
# tptp_d = pd.DataFrame(tptp)
# # 点图
# fig = plt.figure( figsize=(16,4), dpi=100)
# ax = fig.add_subplot(1,1,1)
# x = tptp_d.index
# y = tptp_d.values
# plot = ax.plot( x, y,"r*", color=dt_hex )
# ax.set_xticks( range(2,len(x),10))
# plt.show()
# # 折线描点图
# fig = plt.figure( figsize=(16,4), dpi=100)
# ax = fig.add_subplot(1,1,1)
# x = np.array(data2.index)[0:200]
# y = np.array(data2["USD (PM)"])[0:200]
# plot = ax.plot( x, y, color=dt_hex, linewidth=2, linestyle='-',label='day' )
# plt.scatter(temp5_max_index_real[0:12], temp5_max_value[0:12], s=25, c='r')
# plt.scatter(temp5_min_index_real[0:12], temp5_min_value[0:12], s=25, c='b')
# ax.set_xticks( range(0,len(x),30))
# plt.xlabel('x',fontsize=20)
# plt.ylabel('y',fontsize=20)
# plt.title('title',fontsize=25)
# ax.legend( loc=0, frameon=True )
# plt.savefig('天周期点图.png',dpi=600)
# plt.show()
# 5天(一周趋势)
count = 1
temp5_max = []
temp5_min = []
# temp5_max_index = []
# temp5_min_index = []
while True:
tp_max = max(np.array(data2["USD (PM)"])[(count-1)*short_item:count*short_item])
tp_min = min(np.array(data2["USD (PM)"])[(count-1)*short_item:count*short_item])
# temp5_max_index.append((count-1)*5+list(np.array(data2["USD (PM)"])[(count-1)*5:count*5]).index(tp_max))
# temp5_min_index.append((count-1)*5+list(np.array(data2["USD (PM)"])[(count-1)*5:count*5]).index(tp_min))
temp5_max.append(tp_max)
temp5_min.append(tp_min)
count+=1
if count >= len(data2)/short_item:
break
temp5_max_h = amplitude(np.array(temp5_max))
temp5_min_l = amplitude(np.array(temp5_min))
#
tptp = []
# temp5_max_value = []
# temp5_min_value = []
# temp5_max_index_real = []
# temp5_min_index_real = []
count = 0
for i,j in zip(temp5_max_h, temp5_min_l):
if i > 0 and j > 0:
tptp.append(1)
# temp5_max_value.append(np.array(data2.loc[[temp5_max_index[count]],["USD (PM)"]])[0])
# temp5_min_value.append(np.array(data2.loc[[temp5_min_index[count]],["USD (PM)"]])[0])
# temp5_max_index_real.append(temp5_max_index[count])
# temp5_min_index_real.append(temp5_min_index[count])
elif i < 0 and j < 0:
tptp.append(-1)
# temp5_max_value.append(np.array(data2.loc[[temp5_max_index[count]],["USD (PM)"]])[0])
# temp5_min_value.append(np.array(data2.loc[[temp5_min_index[count]],["USD (PM)"]])[0])
# temp5_max_index_real.append(temp5_max_index[count])
# temp5_min_index_real.append(temp5_min_index[count])
else:
tptp.append(0)
count += 1
tptp_5 = pd.DataFrame(tptp)
#
#fig = plt.figure( figsize=(16,4), dpi=100)
plt.subplot(1,2,2)
x = tptp_5.index
y = tptp_5.values
plt.plot( x, y,"r*", color=dt_hex )
ax.set_xticks( range(2,len(x),10))
plt.xlabel('Time',fontsize=12)
plt.ylabel('Trend',fontsize=12)
plt.savefig("黄金中周期趋势点图.png", dpi=600)
plt.show()
gold_zhangdie(19, 4, 10000, 0.01)
|
1
2
3
4
|
tp = []
for i in tp_z[2][0]:
tp.append(list(i))
pd.DataFrame(tp).to_csv('H.csv')
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
# # 折线描点图
# fig = plt.figure( figsize=(16,4), dpi=100)
# ax = fig.add_subplot(1,1,1)
# x = np.array(data2.index)
# y = np.array(data2["USD (PM)"])
# plot = ax.plot( x, y, color=dt_hex, linewidth=2, linestyle='-',label='day' )
# plt.scatter(temp6_in_index, temp6_in_value, s=25, c='r',label='in')
# plt.scatter(temp6_out_index, temp6_out_value, s=25, c='b',label='out')
# ax.set_xticks( range(0,len(x),100))
# plt.xlabel('x',fontsize=20)
# plt.ylabel('y',fontsize=20)
# plt.title('title',fontsize=25)
# ax.legend( loc=0, frameon=True )
# plt.savefig('黄金交易图.png',dpi=600)
# plt.show()
|
1
|
# output1.to_csv("道斯黄金.csv")
|
1
2
3
4
5
6
7
|
# # 模拟
# score = 10000
# ans = 0 # 手里黄金的盎司
# for i in status_dict:
# ans = ans-(score/(1.01*np.array(data2)[i[0]][1]*i[1]))
# # score = score+np.array(data2)[i[0]][1]*i[1] #i[0]*np.array(data2)[i[0]][1]*0.01
# ans*np.array(data2)[1221][1] # 第1221天
|
1
2
3
4
5
6
7
8
9
10
11
|
# 黄金
#########################################################################################################################################
# 比特币
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
|
def bitcoin(short_item, long_item, score, a):
# 5天(比特币一周趋势)
count = 1
temp7_max = []
temp7_min = []
# temp7_max_index = []
# temp7_min_index = []
while True:
tp_max = max(np.array(data1["Value"])[(count-1)*short_item:count*short_item])
tp_min = min(np.array(data1["Value"])[(count-1)*short_item:count*short_item])
# temp7_max_index.append((count-1)*7+list(np.array(data1["Value])[(count-1)*7:count*7]).index(tp_max))
# temp7_min_index.append((count-1)*7+list(np.array(data1["Value"])[(count-1)*7:count*7]).index(tp_min))
temp7_max.append(tp_max)
temp7_min.append(tp_min)
count+=1
if count >= len(data1)/short_item:
break
temp7_max_h = amplitude(np.array(temp7_max))
temp7_min_l = amplitude(np.array(temp7_min))
#
tptp = []
# temp7_max_value = []
# temp7_min_value = []
# temp7_max_index_real = []
# temp7_min_index_real = []
count = 0
for i,j in zip(temp7_max_h, temp7_min_l):
if i > 0 and j > 0:
tptp.append(1)
# temp7_max_value.append(np.array(data1.loc[[temp7_max_index[count]],["Value"]])[0])
# temp7_min_value.append(np.array(data1.loc[[temp7_min_index[count]],[["Value"]])[0])
# temp7_max_index_real.append(temp7_max_index[count])
# temp7_min_index_real.append(temp7_min_index[count])
elif i < 0 and j < 0:
tptp.append(-1)
# temp7_max_value.append(np.array(data1.loc[[temp7_max_index[count]],["Value"]])[0])
# temp7_min_value.append(np.array(data1.loc[[temp7_min_index[count]],["Value"]])[0])
# temp7_max_index_real.append(temp7_max_index[count])
# temp7_min_index_real.append(temp7_min_index[count])
else:
tptp.append(0)
count += 1
tptp_7 = pd.DataFrame(tptp)
#
# fig = plt.figure( figsize=(16,4), dpi=100)
# ax = fig.add_subplot(1,1,1)
# x = tptp_7.index
# y = tptp_7.values
# plot = ax.plot( x, y,"r*", color=dt_hex )
# ax.set_xticks( range(2,len(x),10))
# plt.show()
# 周比特币平均值
count = 1
temp8 = []
while True:
tp = data1.iloc[short_item*(count-1): short_item*count]["Value"].mean()
count+= 1
temp8.append(tp)
if count >= len(data1)/short_item:
break
temp8_df = pd.DataFrame(temp8) # 252周的比特币价
# 周平均比特币图
# fig = plt.figure( figsize=(16,4), dpi=100)
# ax = fig.add_subplot(1,1,1)
# x = temp8_df.index
# y = temp8_df.values
# plot = ax.plot( x, y, color=dt_hex, linewidth=2, linestyle='-',label='week' )
# ax.set_xticks( range(0,len(x),10))
# ax.legend( loc=0, frameon=True )
# plt.show()
# 长期(28天)
count = 1
temp8_max = [] # 周高位点
temp8_min = [] # 周低位点
while True:
tp_max = max(temp8[(count-1)*long_item:count*long_item])
tp_min = min(temp8[(count-1)*long_item:count*long_item])
temp8_max.append(tp_max)
temp8_min.append(tp_min)
count+=1
if count >= len(temp8)/long_item:
break
temp8_max_h = amplitude(np.array(temp8_max)) # 周涨幅
temp8_min_l = amplitude(np.array(temp8_min)) # 周跌幅
#周趋势(同增通减同趋势,不同则未知)
tptp = []
for i,j in zip(temp8_max_h, temp8_min_l):
if i > 0 and j > 0:
tptp.append(1)
elif i < 0 and j < 0:
tptp.append(-1)
else:
tptp.append(0)
tptp_w_b = pd.DataFrame(tptp) # 第二周开始的61周涨跌幅度表 -1跌+1涨
#周趋势图(长期)
# fig = plt.figure( figsize=(16,4), dpi=100)
# ax = fig.add_subplot(1,1,1)
# x = tptp_w_b.index
# y = tptp_w_b.values
# plot = ax.plot( x, y,"r*", color=dt_hex )
# ax.set_xticks( range(2,len(x),10))
# ax.legend( loc=0, frameon=True )
# plt.show()
# 第一个28天
# 买入-1 卖出+1
status = 0 # 上一周的涨跌
status_dict = [] # (日期,买入还是卖出)
day = 0
for i in range(long_item):
if i == 0: # 第二周
status_first_7 = np.array(tptp_w_b)[0][0]
if status_first_7 < 0:
status = -1 # 跌
elif status_first_7 > 0:
status = 1 # 涨
else:
status = 0
else: # 第三周以后28天以内
for j in range(short_item):
day = short_item*i+j+short_item-1
if status_dict == []: # 没有任何买入时
if status == 1:
status = np.array(tptp_w_b)[i-1][0]
continue
elif status == -1 and day_b_amp[day] > 0:
status_dict.append((day, -1, np.array(data1)[day][1])) # 买入
status = np.array(tptp_w_b)[i-1][0]
break
else: # 有买入后
# 上周涨跌判断 本周每日涨跌幅 上笔交易买卖情况
if status == -1 and day_b_amp[day] > 0 and status_dict[-1][1] >= 0: # 上一笔是卖出才能买入
status_dict.append((day, -1, np.array(data1)[day][1])) # 买入
status = np.array(tptp_w_b)[i-1][0]
break
elif status == -1 and day_b_amp[day] < 0 and status_dict[-1][1] <= 0: # 上一笔是买入才能卖出
status_dict.append((day, 1, np.array(data1)[day][1])) # 卖出
status = np.array(tptp_w_b)[i-1][0]
break
# status_dict
# 第二个月以及后面
for k in range(len(tptp_w_b)):
if np.array(tptp_w_b)[k][0] == 0:
status = np.array(tptp_w_b)[k-1][0]
else:
status = np.array(tptp_w_b)[k][0]
for i in range(long_item):
for j in range(short_item):
day = short_item*long_item*(k+1)+short_item*i+j
if status_dict == []:# 前期无交易
if status == -1 and day_b_amp[day] > 0: # 上一笔是卖出才能买入或无上一笔可买入
status_dict.append((day, -1, np.array(data1)[day][1])) # 买入
status = np.array(tptp_w_b)[i-1][0]
break
elif status == 1 and day_b_amp[day] < 0: # 上一笔是买入才能卖出,无上一笔的不能卖
status = np.array(tptp_w_b)[i-1][0]
continue
else:# 前期有交易
# 跌幅超过10%交易避免赔本
if status == -1 and ((np.array(data1)[day][1]-status_dict[-1][-1])/status_dict[-1][-1]) <= -0.1 and status_dict[-1][1] <= 0:
status_dict.append((day, 1, np.array(data1)[day][1])) # 卖出
continue
if status == -1 and day_b_amp[day] > 0 and status_dict[-1][1] >= 0: # 上一笔是卖出才能买入
status_dict.append((day, -1, np.array(data1)[day][1])) # 买入
status = np.array(tptp_w_b)[i-1][0]
break
elif status == -1 and day_b_amp[day] < 0 and status_dict[-1][1] <= 0: # 上一笔是买入才能卖出
status_dict.append((day, 1, np.array(data1)[day][1])) # 卖出
status = np.array(tptp_w_b)[i-1][0]
break
# status_dict
# 保存 交易日期 交易情况 交易当日金价
temp9 = []
temp9_in_index = []
temp9_in_value = []
temp9_out_index = []
temp9_out_value = []
for i in status_dict:
temp9.append([i[0], i[1], np.array(data1)[i[0]][1]])
if i[1] == -1:
temp9_in_index.append(i[0])
temp9_in_value.append(i[2])
elif i[1] == 1:
temp9_out_index.append(i[0])
temp9_out_value.append(i[2])
output1 = pd.DataFrame(temp9, columns=["Date", "process", "price"])
# output1
### 收益计算 final_zhuan
temp9_zhuan = []
# for i,j in zip(temp9_in_value, temp9_out_value):
# temp9_zhuan.append(j-i)
# print(j-i)
# 模拟本金
ans = 0 # 手里比特币颗数
count = 1
for i in status_dict:
if count%2 == 0:
#print(ans*np.array(data1)[i[0]][1])
score = (1-a)*ans*np.array(data1)[i[0]][1]
ans = 0
temp9_zhuan.append(score)
else:
ans = ans-(score/((1+a)*np.array(data1)[i[0]][1]*i[1]))
score = 0
count += 1
final_zhuan = temp9_zhuan[-1]-10000
if ans != 0:
final_zhuan += (1-a)*ans*np.array(data1)[-1][1]
# print("最终收益: {}".format(final_zhuan))
# 折线描点图
# fig = plt.figure( figsize=(16,4), dpi=100)
# ax = fig.add_subplot(1,1,1)
# x = np.linspace(0, len(temp9_zhuan), len(temp9_zhuan))
# y = np.array(temp9_zhuan)
# plot = ax.plot( x, y, color=dt_hex, linewidth=2, linestyle='-',label='day' )
# ax.set_xticks( range(0,len(x),100))
# plt.xlabel('x',fontsize=20)
# plt.ylabel('y',fontsize=20)
# plt.title('title',fontsize=25)
# ax.legend( loc=0, frameon=True )
# plt.show()
return status_dict, final_zhuan
# bitcoin(7,4)
temp_zz = []
for i in range(5, 20): # 中期
for j in range(2, 5): # 多少中期为长期
a2 = 0.02
temp_zz.append((i,j,bitcoin(i, j, 10000, a2)))
temp_zzz = 0
for i in temp_zz:
if temp_zzz > i[2][-1]:
continue
elif temp_zzz <= i[2][-1]:
temp_zzz = i[2][-1]
tp_z = i
# # 折线描点图
temp9_in_index = []
temp9_in_value = []
temp9_out_index = []
temp9_out_value = []
for i in tp_z[2][0]:
if i[1] == -1:
temp9_in_index.append(i[0])
temp9_in_value.append(i[2])
elif i[1] == 1:
temp9_out_index.append(i[0])
temp9_out_value.append(i[2])
fig = plt.figure( figsize=(16,4), dpi=100)
ax = fig.add_subplot(1,1,1)
x = np.array(data1.index)
y = np.array(data1["Value"])
plot = ax.plot( x, y, color=dt_hex, linewidth=2, linestyle='-',label='day' )
plt.scatter(temp9_in_index, temp9_in_value, s=25, c='r',label='in')
plt.scatter(temp9_out_index, temp9_out_value, s=25, c='b',label='out')
ax.set_xticks( range(0,len(x),100))
plt.xlabel('Date',fontsize=12)
plt.ylabel('Price',fontsize=12)
ax.legend( loc=0, frameon=True )
plt.savefig('比特币交易图.png',dpi=600)
plt.show()
print(tp_z)
|
(9, 3, ([(189, -1, 967.69), (486, 1, 14437.42), (513, -1, 6925.46), (540, 1, 11516.83), (567, -1, 6937.56), (621, 1, 7576.78), (650, -1, 6141.605833), (703, 1, 6362.676923), (729, -1, 6240.98), (759, 1, 6626.85), (783, -1, 6390.42), (810, 1, 4278.77), (811, -1, 4116.7775), (837, 1, 3848.21), (865, -1, 3566.4), (1080, 1, 10360.28), (1111, -1, 8055.64), (1163, 1, 8503.93), (1188, -1, 7189.16), (1269, 1, 8912.82), (1296, -1, 5885.41), (1377, 1, 9380.03), (1459, -1, 10121.52), (1701, 1, 58928.81), (1729, -1, 35530.38), (1758, 1, 35309.3)], 3878233.0105379955))
1
2
3
4
|
tp = []
for i in tp_z[2][0]:
tp.append(list(i))
pd.DataFrame(tp).to_csv('B.csv')
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
|
def bitcoin_zhangdie(short_item, long_item, score, a):
# 5天(比特币一周趋势)
count = 1
temp7_max = []
temp7_min = []
# temp7_max_index = []
# temp7_min_index = []
while True:
tp_max = max(np.array(data1["Value"])[(count-1)*short_item:count*short_item])
tp_min = min(np.array(data1["Value"])[(count-1)*short_item:count*short_item])
# temp7_max_index.append((count-1)*7+list(np.array(data1["Value])[(count-1)*7:count*7]).index(tp_max))
# temp7_min_index.append((count-1)*7+list(np.array(data1["Value"])[(count-1)*7:count*7]).index(tp_min))
temp7_max.append(tp_max)
temp7_min.append(tp_min)
count+=1
if count >= len(data1)/short_item:
break
temp7_max_h = amplitude(np.array(temp7_max))
temp7_min_l = amplitude(np.array(temp7_min))
#
tptp = []
# temp7_max_value = []
# temp7_min_value = []
# temp7_max_index_real = []
# temp7_min_index_real = []
count = 0
for i,j in zip(temp7_max_h, temp7_min_l):
if i > 0 and j > 0:
tptp.append(1)
# temp7_max_value.append(np.array(data1.loc[[temp7_max_index[count]],["Value"]])[0])
# temp7_min_value.append(np.array(data1.loc[[temp7_min_index[count]],[["Value"]])[0])
# temp7_max_index_real.append(temp7_max_index[count])
# temp7_min_index_real.append(temp7_min_index[count])
elif i < 0 and j < 0:
tptp.append(-1)
# temp7_max_value.append(np.array(data1.loc[[temp7_max_index[count]],["Value"]])[0])
# temp7_min_value.append(np.array(data1.loc[[temp7_min_index[count]],["Value"]])[0])
# temp7_max_index_real.append(temp7_max_index[count])
# temp7_min_index_real.append(temp7_min_index[count])
else:
tptp.append(0)
count += 1
tptp_7 = pd.DataFrame(tptp)
#
fig = plt.figure( figsize=(16,4), dpi=100)
plt.subplot(1,2,1)
x = tptp_7.index
y = tptp_7.values
plt.plot( x, y,"r*", color=dt_hex )
ax.set_xticks( range(2,len(x),100))
plt.xlabel('Time',fontsize=20)
plt.ylabel('Trend',fontsize=20)
#plt.savefig("比特币中周期趋势点图.png")
#plt.show()
# 周比特币平均值
count = 1
temp8 = []
while True:
tp = data1.iloc[short_item*(count-1): short_item*count]["Value"].mean()
count+= 1
temp8.append(tp)
if count >= len(data1)/short_item:
break
temp8_df = pd.DataFrame(temp8) # 252周的比特币价
# 周平均比特币图
# fig = plt.figure( figsize=(16,4), dpi=100)
# ax = fig.add_subplot(1,1,1)
# x = temp8_df.index
# y = temp8_df.values
# plot = ax.plot( x, y, color=dt_hex, linewidth=2, linestyle='-',label='week' )
# ax.set_xticks( range(0,len(x),10))
# ax.legend( loc=0, frameon=True )
# plt.show()
# 长期(28天)
count = 1
temp8_max = [] # 周高位点
temp8_min = [] # 周低位点
while True:
tp_max = max(temp8[(count-1)*long_item:count*long_item])
tp_min = min(temp8[(count-1)*long_item:count*long_item])
temp8_max.append(tp_max)
temp8_min.append(tp_min)
count+=1
if count >= len(temp8)/long_item:
break
temp8_max_h = amplitude(np.array(temp8_max)) # 周涨幅
temp8_min_l = amplitude(np.array(temp8_min)) # 周跌幅
#周趋势(同增通减同趋势,不同则未知)
tptp = []
for i,j in zip(temp8_max_h, temp8_min_l):
if i > 0 and j > 0:
tptp.append(1)
elif i < 0 and j < 0:
tptp.append(-1)
else:
tptp.append(0)
tptp_w_b = pd.DataFrame(tptp) # 第二周开始的61周涨跌幅度表 -1跌+1涨
#周趋势图(长期)
#fig = plt.figure( figsize=(16,4), dpi=100)
plt.subplot(1,2,2)
x = tptp_w_b.index
y = tptp_w_b.values
plt.plot( x, y,"r*", color=dt_hex )
ax.set_xticks( range(2,len(x),10))
plt.xlabel('Time',fontsize=20)
plt.ylabel('Trend',fontsize=20)
ax.legend( loc=0, frameon=True )
plt.savefig("比特币长周期趋势点图.png")
plt.show()
bitcoin_zhangdie(9, 3, 10000, 0.02)
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
# # 折线描点图
# fig = plt.figure( figsize=(16,4), dpi=100)
# ax = fig.add_subplot(1,1,1)
# x = np.array(data1.index)
# y = np.array(data1["Value"])
# plot = ax.plot( x, y, color=dt_hex, linewidth=2, linestyle='-',label='day' )
# plt.scatter(temp9_in_index, temp9_in_value, s=25, c='r',label='in')
# plt.scatter(temp9_out_index, temp9_out_value, s=25, c='b',label='out')
# ax.set_xticks( range(0,len(x),100))
# plt.xlabel('x',fontsize=20)
# plt.ylabel('y',fontsize=20)
# plt.title('title',fontsize=25)
# ax.legend( loc=0, frameon=True )
# plt.savefig('比特币交易图.png',dpi=600)
# plt.show()
|
1
|
# output1.to_csv("道斯比特币.csv")
|
1
2
3
4
5
6
7
|
# # 模拟
# score = 10000
# ans = 0 # 手里比特币颗数
# for i in status_dict:
# ans = ans-(score/(1.02*np.array(data1)[i[0]][1]*i[1]))
# # score = score+np.array(data2)[i[0]][1]*i[1] #i[0]*np.array(data2)[i[0]][1]*0.01
# ans*np.array(data1)[1716][1] # 第1716天
|
1
2
3
|
# 先向前取值填充,再先后取值填充
zdata = pd.merge(data1, data2, how='outer').fillna(method='ffill').fillna(method='backfill')
zdata.to_csv("price.csv")
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
|
def Rt(Pt):
Rt = []
p1 = np.array(Pt.copy()[1:])
p2 = np.array(Pt.copy()[:-1])
count = 0
for i,j in zip(p1, p2):
count+=1
rt = 0
if count <= 60:
for k in range(count):
rt = rt + (p1[count-1]-p2[count-1])/p2[count-1]
else:
for k in range(60):
rt = rt + (p1[count-k-1]-p2[count-k-1])/p2[count-k-1]
Rt.append(rt)
return Rt
def ERt(Rt):
ERt = []
n = len(Rt)
for i in range(1,n+1):
ERt.append(np.array(list(Rt[0:i])).sum()/i)
return ERt
def Dt(Rt):
DRt = []
n = len(Rt)
count = 0
for i in range(1,n+1):
# tpd = 0
# for j in range(1,i):
# tpd = tpd+(Rt[j]-ERt(Rt[0:i])[-1])**2
# DRt.append(tpd/(i-1))
count += 1
if count <= 60:
DRt.append(np.std(Rt[0:i],ddof = 1))
else:
DRt.append(np.std(Rt[i-60:i],ddof = 1))
return DRt
Rgt = Rt(zdata["USD (PM)"])
ERgt = ERt(Rgt)
DRgt = Dt(Rgt)
Rbt = Rt(zdata["Value"])
ERbt = ERt(Rbt)
DRbt = Dt(Rbt)
|
D:\Anaconda\envs\python32\lib\site-packages\numpy\core\_methods.py:217: RuntimeWarning: Degrees of freedom <= 0 for slice
keepdims=keepdims)
D:\Anaconda\envs\python32\lib\site-packages\numpy\core\_methods.py:209: RuntimeWarning: invalid value encountered in double_scalars
ret = ret.dtype.type(ret / rcount)
1825
1
|
pd.DataFrame([Rgt,DRgt,Rbt,DRbt]).T[0:10]
|
|
0 |
1 |
2 |
3 |
0 |
0.000000 |
NaN |
-0.019271 |
NaN |
1 |
-0.001434 |
0.001014 |
0.004101 |
0.016526 |
2 |
-0.004306 |
0.002193 |
-0.010312 |
0.011792 |
3 |
-0.033138 |
0.015714 |
0.010249 |
0.013436 |
4 |
-0.009345 |
0.013610 |
-0.010403 |
0.012004 |
5 |
0.000000 |
0.012794 |
-0.020390 |
0.012414 |
6 |
0.000000 |
0.012068 |
0.052352 |
0.025360 |
7 |
0.039745 |
0.019917 |
-0.018182 |
0.024429 |
8 |
-0.007187 |
0.018742 |
-0.022567 |
0.023908 |
9 |
0.093622 |
0.034952 |
-0.160681 |
0.054483 |
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
|
# 金R 币R 金标 币标
tpp = []
m_list = []
a1 = 0.01
a2 = 0.02
for m in [(i+1)/10 for i in range(10)]:
tp = []
for rg,rb,dg,db in zip(Rgt[1:], Rbt[1:], DRgt[1:], DRbt[1:]):
#rx = (rg-0.01)*x1+(rb-0.02)*x2
#dg*x1+db*x2<=0.22
#(1+0.01)*x1+(1+0.02)*x2=1
#x1,x2>0
# c = np.array([-(rg-0.01), -(rb-0.02)])
A_ub = np.array([[dg, db]]) # 不等式约束
b_ub = np.array([0.22])
c = np.array([-m*(rg-a1)+(1-m)*dg, -m*(rb-a2)+(1-m)*db])
A_eq = np.array([[1+a1, 1+a2]]) # 等式约束
b_eq = np.array([1])
r = linprog(c , A_ub, b_ub, A_eq, b_eq, bounds=((0, None), (0, None)))#, method='simplex'#
if dict(r)['success'] == True:
# print(dict(r)['fun'],dict(r)['x'])
tp.append(dict(r)['x'])
else:
print("error")
pd.DataFrame(tp).to_csv("temp.csv")
# 计算收益
np.set_printoptions(suppress=True)
B = pd.read_csv(r'B.csv') # B
H = pd.read_csv(r'H.csv') # H
Times = pd.read_csv(r'temp.csv') # Time
B = B.set_index("Unnamed: 0")
H = H.set_index("Unnamed: 0")
Times = Times.set_index("Unnamed: 0")
# 先向前取值填充,再先后取值填充
BH = pd.merge(H.iloc[:,0:2], B.iloc[:,0:2], how='outer',on='0').sort_values('0',ascending=True)
BH = pd.merge(BH, H.iloc[:,0:3:2], how="left", on=["0"])
BH = pd.merge(BH, B.iloc[:,0:3:2], how="left", on=["0"]).fillna(0)
m = 1000
h = 0
b = 0
p = 0
q = 0
control_list = []
for i in range(len(Times)):
x1 = 0
x2 = 0
j = 0
t = 0
if i <= 9:
control_list.append([i,0,m,h,j,b,t,x1,x2])
continue
else:
if i not in list(np.array(BH['0'])):
control_list.append([i,0,m,h,j,b,t,x1,x2])
continue
if np.array(BH[BH['0'].isin([str(i)])]['1_x'])[0] != 0: # H
# if np.array(BH[BH['0'].isin([str(i)])]['2_y'])[0] == 0: # B
if np.array(BH[BH['0'].isin([str(i)])]['1_x'])[0] < 0: # 买
j = np.array(H[H['0'].isin([i])]['2'])[0]
x1 = np.array(Times.iloc[[i]]['0'])[0]
x2 = np.array(Times.iloc[[i]]['1'])[0]
p = m*x1#(x1/(x1+x2))
q = m*x2#(x2/(x1+x2))
h = (p-0.01*p)/j
p = 0
m = p + q
control_list.append([i,11,m,h,j,b,0,x1,x2])
# print(m)
if np.array(BH[BH['0'].isin([str(i)])]['1_x'])[0] > 0: # 卖
j = np.array(H[H['0'].isin([i])]['2'])[0]
x1 = np.array(Times.iloc[[i]]['0'])[0]
x2 = np.array(Times.iloc[[i]]['1'])[0]
p = m*x1
q = m*x2
m = h*j-h*j*0.01+p+q
h = 0
control_list.append([i,-11,m,h,j,b,0,x1,x2])
# print(m)
# if np.array(BH[BH['0'].isin([str(i)])]['2_x'])[0] == 0: # H
if np.array(BH[BH['0'].isin([str(i)])]['1_y'])[0] != 0: # B
if np.array(BH[BH['0'].isin([str(i)])]['1_y'])[0] < 0: # 买
t = np.array(B[B['0'].isin([i])]['2'])[0]
x1 = np.array(Times.iloc[[i]]['0'])[0]
x2 = np.array(Times.iloc[[i]]['1'])[0]
p = m*x1#(x1/(x1+x2))
q = m*x2#(x2/(x1+x2))
b = (q-0.02*q)/t
q = 0
m = p + q
control_list.append([i,22,m,h,0,b,t,x1,x2])
# print(m)
elif np.array(BH[BH['0'].isin([str(i)])]['1_y'])[0] > 0: # 卖
t = np.array(B[B['0'].isin([i])]['2'])[0]
x1 = np.array(Times.iloc[[i]]['0'])[0]
x2 = np.array(Times.iloc[[i]]['1'])[0]
p = m*x1
q = m*x2
m = b*t-b*t*0.02+p+q
b = 0
control_list.append([i,-22,m,h,0,b,t,x1,x2])
print(m)
m_list.append(m)
tpp.append(tp)
if m == max(m_list):
cp = tp.copy()
|
1.5341490324511317e-07
13355.311933987936
13355.316492107382
13224.381909615571
13018.555127669617
72087.61420997653
67289.02306787031
67289.0214488072
67289.02289644151
67289.02351520825
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
# 拼接
cct = []
bc = [i[1] for i in cp]
hc = [i[0] for i in cp]
bcd = pd.concat([pd.DataFrame(np.array(data1["Date"][2:]),columns=["Date"]), pd.DataFrame(bc)],axis=1)
bcd = pd.concat([bcd, pd.DataFrame(hc, columns=["1"])],axis=1)
for i in np.array(bcd["Date"]):
if str(i) not in np.array(data2["Date"]):
x1 = np.array(bcd[bcd['Date'].isin([str(i)])])[0][1] # b
data_b = np.array(day_b_amp_b[day_b_amp_b['Date'].isin([str(i)])])[0][1]
cct.append([i,x1*data_b])
else:
x1 = np.array(bcd[bcd['Date'].isin([str(i)])])[0][1] # b
x2 = np.array(bcd[bcd['Date'].isin([str(i)])])[0][2] # h
data_b = np.array(day_b_amp_b[day_b_amp_b['Date'].isin([str(i)])])[0][1]
data_h = np.array(day_g_amp_g[day_g_amp_g['Date'].isin([str(i)])])[0][1]
cct.append([i,x1*data_b+x2*data_h])
|
1
2
|
# bcd.to_csv("bcd.csv")
bcd[0:100]
|
|
Date |
0 |
1 |
0 |
9/13/16 |
9.955559e-09 |
9.900990e-01 |
1 |
9/14/16 |
8.681865e-12 |
9.900990e-01 |
2 |
9/15/16 |
9.803922e-01 |
2.956531e-10 |
3 |
9/16/16 |
4.800950e-08 |
9.900990e-01 |
4 |
9/17/16 |
6.381767e-12 |
9.900990e-01 |
... |
... |
... |
... |
95 |
12/17/16 |
2.534639e-11 |
9.900990e-01 |
96 |
12/18/16 |
3.448482e-11 |
9.900990e-01 |
97 |
12/19/16 |
3.676633e-11 |
9.900990e-01 |
98 |
12/20/16 |
5.439868e-02 |
9.351617e-01 |
99 |
12/21/16 |
5.679174e-02 |
9.327450e-01 |
100 rows × 3 columns
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
# 在线组合投资策略SR
SRz = []
cct = np.array(pd.DataFrame(cct).set_index(0))
y1 = cct[0:110]
y2 = cct[111:475]
y3 = cct[475:840]
y4 = cct[840:1205]
y5 = cct[1205:1571]
y6 = cct[1571:]
y = [y1,y2,y3,y4,y5,y6]
for i in y:
ym = np.array(i).mean()
yd = np.std(np.array(i),ddof = 1)
SRz.append(ym/yd)
print(SRz)
|
[0.12627760490052334, 0.18066721433635508, 0.006387364409278252, 0.11830503471966762, 0.16092710155261009, 0.15214449153644669]
array([[-0.0007101 ],
[-0.00142121],
[ 0.00251209],
...,
[-0.0973831 ],
[-0.01414734],
[ 0.00607063]])
1
2
3
4
5
|
SRg = np.round(SRg,decimals=4)
SRb = np.round(SRb,decimals=4)
SR055 = np.round(SR055,decimals=4)
SRz = np.round(SRz,decimals=4)
pd.DataFrame([SRg, SRb, SR055, SRz], index=["g","b","5g5b","gb"]).T.to_csv("SR.csv")
|
1
2
3
4
5
6
7
8
9
10
11
12
|
# plt.rcParams['font.sans-serif'] = ['SimHei']
# plt.rcParams['axes.unicode_minus'] = False
fig = plt.figure( figsize=(16,4), dpi=100)
ax = fig.add_subplot(1,1,1)
x = np.array([i/10 for i in range(len(m_list))])
y = np.array(m_list)
plot = ax.plot( x, y, color=dt_hex)
ax.set_xticks([i/10 for i in range(len(m_list))])
plt.xlabel('Risk appetite factor',fontsize=12)
plt.ylabel('5 years investment income',fontsize=12)
plt.savefig('风险收益图.png',dpi=600)
plt.show()
|
10
|
0 |
1 |
0 |
9.900990e-01 |
9.179798e-12 |
1 |
9.900990e-01 |
1.332468e-11 |
2 |
2.355041e-11 |
9.803922e-01 |
3 |
9.900986e-01 |
3.751610e-07 |
4 |
9.900990e-01 |
3.549778e-11 |
... |
... |
... |
1819 |
1.802604e-01 |
8.018990e-01 |
1820 |
1.516702e-01 |
8.302089e-01 |
1821 |
1.167487e-01 |
8.647880e-01 |
1822 |
6.930200e-02 |
9.117696e-01 |
1823 |
3.950726e-02 |
9.412722e-01 |
1824 rows × 2 columns
1
|
data2.set_index("Date")
|
|
USD (PM) |
Date |
|
9/12/16 |
1324.60 |
9/13/16 |
1323.65 |
9/14/16 |
1321.75 |
9/15/16 |
1310.80 |
9/16/16 |
1308.35 |
... |
... |
9/6/21 |
1821.60 |
9/7/21 |
1802.15 |
9/8/21 |
1786.00 |
9/9/21 |
1788.25 |
9/10/21 |
1794.60 |
1265 rows × 1 columns
1
2
3
4
5
6
|
# for i in tpp:
ppt = []
for i in tpp:
ppt.append(pd.DataFrame(i))
ppt.append(pd.DataFrame(np.array(data1["Date"][2:]),columns=["Date"]))
pd.concat(ppt,axis=1).set_index(["Date"]).to_csv("m10.csv")
|
1
2
|
# cct2 = pd.merge(cct, data2.set_index("Date"),how="left", on=["Date"])
# cct2
|
1
2
3
4
5
6
7
8
9
10
11
12
13
|
# temp_row = []
# for index, row in cct2.iterrows():
# if np.isnan(row["USD (PM)"]) == True:
# lll = [index]
# for l in row.iteritems():
# if l[0] == 1:
# ll = 0
# elif l[0] == 0:
# ll = 1
# else:
# ll = l[0]
# lll.append(ll)
# pd.DataFrame(np.array(lll)).T.set_index(0)
|